Towards Smarter Diagnosis

Author:

Huang Qicheng1,Fang Chenlei1,Mittal Soumya1,Blanton R. D. (Shawn)1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, Pennsylvania

Abstract

Given the inherent perturbations during the fabrication process of integrated circuits that lead to yield loss, diagnosis of failing chips is a mitigating method employed during both yield ramping and high-volume manufacturing for yield learning. However, various uncertainties in the fabrication process bring a number of challenges, resulting in diagnosis with undesirable outcomes or low efficiency, including, for example, diagnosis failure, bad resolution, and extremely long runtime. It would therefore be very beneficial to have a comprehensive preview of diagnostic outcomes beforehand, which allows fail logs to be prioritized in a more reasonable way for smarter allocation of diagnosis resources. In this work, we propose a learning-based previewer, which is able to predict five aspects of diagnostic outcomes for a failing IC, including diagnosis success, defect count, failure type, resolution, and runtime magnitude. The previewer consists of three classification models and one regression model, where Random Forest classification and regression are used. Experiments on a 28 nm test chip and a high-volume 90 nm part demonstrate that the predictors can provide accurate prediction results, and in a virtual application scenario the overall previewer can bring up to 9× speed-up for the test chip and 6× for the high-volume part.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference18 articles.

1. 02 2012 64 64 6198433 10.1109/MDT.2012.2196611 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6198433 <![CDATA[ 02 2012 72 72 6198434 10.1109/MDT.2012.2196612 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6198434 <![CDATA[ 02 2012 79 79 6198435 10.1109/MDT.2012.2196613 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6198435 <![CDATA[Determining a Failure Root Cause Distribution From a Population of Layout-Aware Scan Diagnosis Results</a></p><p>2. <a href="/WebPortal/ArticleView?wd=F1EFD2446D07E5DEB060A94191B0009BB3B2A7C077D21CD05AA126B5F0135B42" target="_blank">Yield Learning Through Physically Aware Diagnosis of IC-Failure Populations</a></p><p>3. ROC graphs: Notes and practical considerations for researchers;Fawcett Tom;Mach. Learn.,2004</p></div> </div> <div id="ContentPlaceHolder1_divCited" class="cited mt40"> <p class="font-bold font20">Cited by<span class="reference-num"> <span id="ContentPlaceHolder1_LabelCitedcount">5</span> articles.</span> <span class="reference-num"> <a onclick="return confirm('您确定要订阅此论文施引文献吗?');" id="ContentPlaceHolder1_LinkButton3" class="mr15 color-wit line-h pl10 bg-red" href="javascript:__doPostBack('ctl00$ContentPlaceHolder1$LinkButton3','')">订阅此论文施引文献</a> <span id="ContentPlaceHolder1_Label3">订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献</span> <span id="ContentPlaceHolder1_lbMsg"></span> </span> </p> <div id="ContentPlaceHolder1_divCited2" class="reference-item color-gray2 mt10"><p>1. <a href="/WebPortal/ArticleView?wd=F1EFD2446D07E5DEFE0D055BEE3DD5AA876F72B98C1377B1B49F94CBA8BAC0DC" target="_blank">Analysis and Characterization of Defects in FeFETs</a>;2023 IEEE International Test Conference (ITC);2023-10-07</p><p>2. <a href="/WebPortal/ArticleView?wd=03E459076164F53E117BA9BA3B6222F5314A22662F0A0D12173E6952447368AF" target="_blank">Conventional Methods for Fault Diagnosis</a>;Machine Learning Support for Fault Diagnosis of System-on-Chip;2023</p><p>3. <a href="/WebPortal/ArticleView?wd=03E459076164F53E117BA9BA3B6222F5314A22662F0A0D1298DF750529CC32CB" target="_blank">Machine Learning Support for Diagnosis of Analog Circuits</a>;Machine Learning Support for Fault Diagnosis of System-on-Chip;2022-10-22</p><p>4. <a href="/WebPortal/ArticleView?wd=03E459076164F53E117BA9BA3B6222F5314A22662F0A0D1279AA48671129B468" target="_blank">Machine Learning in Logic Circuit Diagnosis</a>;Machine Learning Support for Fault Diagnosis of System-on-Chip;2022-10-22</p><p>5. <a href="/WebPortal/ArticleView?wd=F1EFD2446D07E5DEF21210761F177324F21E2AB981F87F04DF309B11F8CA99C7" target="_blank">BIST-Assisted Analog Fault Diagnosis</a>;2021 IEEE European Test Symposium (ETS);2021-05-24</p></div> </div> </div> </div> <!----------------------------------到这结束----------------------------------------> <!--main end--> </div> <input type="hidden" name="ctl00$ContentPlaceHolder1$HiddenField1" id="ContentPlaceHolder1_HiddenField1" value="68DB54E59BC4A4407FEA0681AFCF235B" /> </td> </tr> </table> </td> </tr> <tr> <td> <!--foot start--> <div class="box100 foot "> <div class="box1200 mau clearfix"> <div class="pt20 pb20 font24">同舟云学术</div> <div class="fl box50"> <div class="box100 clearfix"> <p class="foot-tip fl mr15 fun-btn"><span>1.学者识别</span>学者识别</p> <p class="foot-tip fl mr15 fun-btn"><span>2.学术分析</span>学术分析</p> <p class="foot-tip fl mr15 fun-btn"><span>3.人才评估</span>人才评估</p> </div> <p class="font12 pr40 pt20 pb20 color-gray">"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811<span style="font-size:0px;color:white">{复制后删除}</span>0370</p> <p class="color-gray"><b><a href="/">www.globalauthorid.com</a></b></p> </div> <div class="fr qerbox "> <p class="color-blue text-center pt20 pb10">TOP</p> <a href="#top" class="btn-top mau"><img src="/images/top.png" alt=""></a> </div> <div class="fr qerbox mr15"><img src="/images/code_web.png" alt=""></div> </div> <p class="pt20 pb20 text-center">Copyright © 2019-2024 北京同舟云网络信息技术有限公司<br> <a href="http://www.beian.gov.cn/portal/registerSystemInfo?recordcode=11010802033243" target="_blank">京公网安备11010802033243号</a>  <a href="https://beian.miit.gov.cn/#/Integrated/index" target="_blank">京ICP备18003416号-3</a></p> </div> <!--foot end--> </td> </tr> </table> </form> </body> </html>