Eliminating synchronization overhead in automatically parallelized programs using dynamic feedback

Author:

Diniz Pedro C.1,Rinard Martin C.2

Affiliation:

1. Univ. of Southern California, Marina del Rey, CA

2. Massachusetts Institute of Technology, Cambridge

Abstract

This article presents dynamic feedback, a technique that enables computations to adapt dynamically to different execution environments. A compiler that uses dynamic feedback produces several different versions of the same source code; each version uses a different optimization policy. The generated code alternately performs sampling phases and production phases. Each sampling phase measures the overhead of each version in the current environment. Each production phase uses the version with the least overhead in the previous sampling phase. The computation periodically resamples to adjust dynamically to changes in the environment. We have implemented dynamic feedback in the context of a parallelizing compiler for object-based programs. The generated code uses dynamic feedback to automatically choose the best synchronization optimization policy. Our experimental results show that the synchronization optimization policy has a significant impact on the overall performance of the computation, that the best policy varies from program to program, that the compiler is unable to statically choose the best policy, and that dynamic feedback enables the generted code to exhibit performance that is comparable to that of code that has been manually tuned to use the best policy. We have also performed a theoretical analysis which provides, under certain assumptions, a guaranteed optimality bound for dynamic feedback relative to a hypothetical (and unrealizable) optimal algorithm that uses the best policy at every point during the execution.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How does frame-loss affect users’ perception of smoothness?;CCF Transactions on Pervasive Computing and Interaction;2021-04-20

2. Locking Made Easy;Proceedings of the 17th International Middleware Conference;2016-11-28

3. Reliable synchronization in distributed systems;International Journal of Computer Mathematics;2004-06

4. Eliminating synchronization bottlenecks using adaptive replication;ACM Transactions on Programming Languages and Systems;2003-05

5. A comparison of concurrent programming and cooperative multithreading;Concurrency and Computation: Practice and Experience;2003-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3