Communication optimization and code generation for distributed memory machines

Author:

Amarasinghe Saman P.,Lam Monica S.

Abstract

This paper presents several algorithms to solve code generation and optimization problems specific to machines with distributed address spaces. Given a description of how the computation is to be partitioned across the processors in a machine, our algorithms produce an SPMD (single program multiple data) program to be run on each processor. Our compiler generated the necessary receive and send instructions, optimizes the communication by eliminating redundant communication and aggregating small messages into large messages, allocates space locally on each processor, and translates global data addresses to local addresses. Our techniques are based on an exact data-flow analysis on individual array element accesses. Unlike data dependence analysis, this analysis determines if two dynamic instances refer to the same value, and not just to the same location. Using this information, our compiler can handle more flexible data decompositions and find more opportunities for communication optimization than systems based on data dependence analysis. Our technique is based on a uniform framework, where data decompositions, computation decompositions and the data flow information are all represented as systems of linear inequalities. We show that the problems of communication code generation, local memory management, message aggregation and redundant data communication elimination can all be solved by projecting polyhedra represented by sets of inequalities onto lower dimensional spaces.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyclebite: Extracting Task Graphs From Unstructured Compute-Programs;IEEE Transactions on Computers;2024-01

2. DISTAL: the distributed tensor algebra compiler;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

3. DisGCo;ACM Transactions on Architecture and Code Optimization;2020-12-31

4. OmpMemOpt: Optimized Memory Movement for Heterogeneous Computing;Euro-Par 2020: Parallel Processing;2020

5. Fog Computing and Data as a Service: A Goal-Based Modeling Approach to Enable Effective Data Movements;Advanced Information Systems Engineering;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3