Fast, effective dynamic compilation

Author:

Auslander Joel1,Philipose Matthai1,Chambers Craig1,Eggers Susan J.1,Bershad Brian N.1

Affiliation:

1. Department of Computer Science and Engineering, University of Washington

Abstract

Dynamic compilation enables optimization based on the values of invariant data computed at run-time. Using the values of these run-time constants, a dynamic compiler can eliminate their memory loads, perform constant propagation and folding, remove branches they determine, and fully unroll loops they bound. However, the performance benefits of the more efficient, dynamically-compiled code are offset by the run-time cost of the dynamic compile. Our approach to dynamic compilation strives for both fast dynamic compilation and high-quality dynamically-compiled code: the programmer annotates regions of the programs that should be compiled dynamically; a static, optimizing compiler automatically produces pre-optimized machine-code templates, using a pair of dataflow analyses that identify which variables will be constant at run-time; and a simple, dynamic compiler copies the templates, patching in the computed values of the run-time constants, to produce optimized, executable code. Our work targets general- purpose, imperative programming languages, initially C. Initial experiments applying dynamic compilation to C programs have produced speedups ranging from 1.2 to 1.8.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models;Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages;2022-11-29

2. Low-latency query compilation;The VLDB Journal;2022-05-10

3. Domain specific run time optimization for software data planes;Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2022-02-22

4. An abstract interpretation for SPMD divergence on reducible control flow graphs;Proceedings of the ACM on Programming Languages;2021-01-04

5. Efficient generation of machine code for query compilers;Proceedings of the 16th International Workshop on Data Management on New Hardware;2020-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3