Performance and Power Estimation of STT-MRAM Main Memory with Reliable System-level Simulation

Author:

Asifuzzaman Kazi1ORCID,Verdejo Rommel Sánchez2,Radojković Petar3

Affiliation:

1. Barcelona Supercomputing Center & Universitat Politécnica de Catalunya, Spain, USA

2. Barcelona Supercomputing Center & Universitat Politácnica de Catalunya, Spain

3. Barcelona Supercomputing Center, Spain

Abstract

It is questionable whether DRAM will continue to scale and will meet the needs of next-generation systems. Therefore, significant effort is invested in research and development of novel memory technologies. One of the candidates for next-generation memory is Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM). STT-MRAM is an emerging non-volatile memory with a lot of potential that could be exploited for various requirements of different computing systems. Being a novel technology, STT-MRAM devices are already approaching DRAM in terms of capacity, frequency, and device size. Although STT-MRAM technology got significant attention of various major memory manufacturers, academic research of STT-MRAM main memory remains marginal. This is mainly due to the unavailability of publicly available detailed timing and current parameters of this novel technology, which are required to perform a reliable main memory simulation on performance and power estimation. This study demonstrates an approach to perform a cycle accurate simulation of STT-MRAM main memory, being the first to release detailed timing and current parameters of this technology from academia—essentially enabling researchers to conduct reliable system-level simulation of STT-MRAM using widely accepted existing simulation infrastructure. The results show a fairly narrow overall performance deviation in response to significant variations in key timing parameters, and the power consumption experiments identify the key power component that is mostly affected with STT-MRAM.

Funder

Spanish Government

Generalitat de Catalunya

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Detailed Study of SOT-MRAM as an Alternative to DRAM Primary Memory in Multi-Core Environment;IEEE Access;2024

2. SOT-MRAM Based Main Memory: An Alternative to DRAM;2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT);2022-07-08

3. Data block manipulation for error rate reduction in STT-MRAM based main memory;The Journal of Supercomputing;2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3