A General SIMD-Based Approach to Accelerating Compression Algorithms

Author:

Zhao Wayne Xin1,Zhang Xudong2,Lemire Daniel3,Shan Dongdong4,Nie Jian-Yun5,Yan Hongfei2,Wen Ji-Rong1

Affiliation:

1. Renmin University of China, Beijing, China

2. Peking University, Beijing, China

3. Université du Québec, Canada

4. Alibaba Group

5. Université de Montréal, Canada

Abstract

Compression algorithms are important for data-oriented tasks, especially in the era of “Big Data.” Modern processors equipped with powerful SIMD instruction sets provide us with an opportunity for achieving better compression performance. Previous research has shown that SIMD-based optimizations can multiply decoding speeds. Following these pioneering studies, we propose a general approach to accelerate compression algorithms. By instantiating the approach, we have developed several novel integer compression algorithms, called Group-Simple, Group-Scheme, Group-AFOR, and Group-PFD, and implemented their corresponding vectorized versions. We evaluate the proposed algorithms on two public TREC datasets, a Wikipedia dataset, and a Twitter dataset. With competitive compression ratios and encoding speeds, our SIMD-based algorithms outperform state-of-the-art nonvectorized algorithms with respect to decoding speeds.

Funder

National Key Basic Research Program (973 Program) of China

Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada's

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIMDified Data Processing - Foundations, Abstraction, and Advanced Techniques;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. BOUNCE: memory-efficient SIMD approach for lightweight integer compression;Distributed and Parallel Databases;2023-05-10

3. The FastLanes Compression Layout: Decoding > 100 Billion Integers per Second with Scalar Code;Proceedings of the VLDB Endowment;2023-05

4. Accelerating Huffman Encoding Using 512-bit SIMD Instructions;IEEE Transactions on Consumer Electronics;2023

5. Partition-based SIMD Processing and its Application to Columnar Database Systems;Datenbank-Spektrum;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3