The FastLanes Compression Layout: Decoding > 100 Billion Integers per Second with Scalar Code

Author:

Afroozeh Azim1,Boncz Peter1

Affiliation:

1. CWI, The Netherlands

Abstract

The open-source FastLanes project aims to improve big data formats, such as Parquet, ORC and columnar database formats, in multiple ways. In this paper, we significantly accelerate decoding of all common Light-Weight Compression (LWC) schemes: DICT, FOR, DELTA and RLE through better data-parallelism. We do so by re-designing the compression layout using two main ideas: (i) generalizing the value interleaving technique in the basic operation of bit-(un)packing by targeting a virtual 1024-bits SIMD register, (ii) reordering the tuples in all columns of a table in the same Unified Transposed Layout that puts tuple chunks in a common "04261537" order (explained in the paper); allowing for maximum independent work for all possible basic SIMD lane widths: 8, 16, 32, and 64 bits. We address the software development, maintenance and future-proofness challenges of increasing hardware diversity, by defining a virtual 1024-bits instruction set that consists of simple operators supported by all SIMD dialects; and also, importantly, by scalar code. The interleaved and tuple-reordered layout actually makes scalar decoding faster, extracting more data-parallelism from today's wide-issue CPUs. Importantly, the scalar version can be fully auto-vectorized by modern compilers, eliminating technical debt in software caused by platform-specific SIMD intrinsics. Micro-benchmarks on Intel, AMD, Apple and AWS CPUs show that FastLanes accelerates decoding by factors (decoding >40 values per CPU cycle). FastLanes can make queries faster, as compressing the data reduces bandwidth needs, while decoding is almost free.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference39 articles.

1. [n.d.]. Apache Parquet. http://parquet.apache.org/. [n.d.]. Apache Parquet. http://parquet.apache.org/.

2. Integrating compression and execution in column-oriented database systems

3. A Afroozeh. 2020. Towards a New File Format for Big Data: SIMD-Friendly Composable Compression. https://homepages.cwi.nl/~boncz/msc/2020-AzimAfroozeh.pdf A Afroozeh. 2020. Towards a New File Format for Big Data: SIMD-Friendly Composable Compression. https://homepages.cwi.nl/~boncz/msc/2020-AzimAfroozeh.pdf

4. Peter A. Boncz Marcin Zukowski and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR. Peter A. Boncz Marcin Zukowski and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NULLS!: Revisiting Null Representation in Modern Columnar Formats;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

2. Accelerating GPU Data Processing using FastLanes Compression;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

3. ALP: Adaptive Lossless floating-Point Compression;Proceedings of the ACM on Management of Data;2023-12-08

4. An Empirical Evaluation of Columnar Storage Formats;Proceedings of the VLDB Endowment;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3