BOUNCE: memory-efficient SIMD approach for lightweight integer compression

Author:

Hildebrandt Juliana,Habich Dirk,Lehner Wolfgang

Abstract

AbstractInteger compression plays an important role in columnar database systems to reduce the main memory footprint as well as to speedup query processing. To keep the additional computational effort of (de)compression as low as possible, the powerful Single Instruction Multiple Data (SIMD) extensions of modern CPUs are heavily applied. While a scalar compression algorithm usually compresses a block of N consecutive integers, the state-of-the-art SIMDified implementation scales the block size to $$k \cdot N$$ k · N with k as the number of elements which could be simultaneously processed in an SIMD register. On the one hand, this scaling SIMD approach improves the performance of (de)compression. But on the other hand, it can lead to a degradation of the memory footprint of the compressed data. Within this article, we analyze this degradation effect for various integer compression algorithms and present a novel SIMD concept to overcome that effect. The core idea of our novel SIMD concept called BOUNCE is to concurrently compress k different blocks of size N within SIMD registers, guaranteeing the same compression ratio as scalar variant. As we are going to show, our proposed SIMD idea works well on various Intel CPUs and may offer a new generalized SIMD concept to optimize further algorithms.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Hardware and Architecture,Information Systems,Software

Reference27 articles.

1. Lomet, D.B.: Cost/performance in modern data stores: how data caching systems succeed. In: Lehner, W., Salem, K. (eds.) Proceedings of the 14th International Workshop on Data Management on New Hardware, Houston, TX, June 11, 2018, pp. 9–1910. ACM (2018). https://doi.org/10.1145/3211922.3211927

2. Abadi, D.J., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented database systems. In: Chaudhuri, S., Hristidis, V., Polyzotis, N. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, IL, June 27–29, 2006, pp. 671–682. ACM (2006). https://doi.org/10.1145/1142473.1142548

3. Damme, P., Ungethüm, A., Pietrzyk, J., Krause, A., Habich, D., Lehner, W.: Morphstore: analytical query engine with a holistic compression-enabled processing model. Proc. VLDB Endow. 13(11), 2396–2410 (2020)

4. Landgraf, L., Lehner, W., Wolf, F., Boehm, A.: Memory efficient scheduling of query pipeline execution. In: 12th Conference on Innovative Data Systems Research, CIDR 2022, Chaminade, CA, January 9–12, 2022. (2022). www.cidrdb.org, https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf

5. Boissier, M., Jendruk, M.: Workload-driven and robust selection of compression schemes for column stores. In: Herschel, M., Galhardas, H., Reinwald, B., Fundulaki, I., Binnig, C., Kaoudi, Z. (eds.) Advances in Database Technology—22nd International Conference on Extending Database Technology, EDBT 2019, Lisbon, March 26–29, 2019, pp. 674–677. OpenProceedings.org (2019). https://doi.org/10.5441/002/edbt.2019.84

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIMDified Data Processing - Foundations, Abstraction, and Advanced Techniques;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3