Partition-based SIMD Processing and its Application to Columnar Database Systems

Author:

Hildebrandt Juliana,Pietrzyk Johannes,Krause Alexander,Habich DirkORCID,Lehner Wolfgang

Abstract

AbstractThe Single Instruction Multiple Data (SIMD) paradigm became a core principle for optimizing query processing in columnar database systems. Until now, only the instructions are considered to be efficient enough to achieve the expected speedups, while avoiding is considered almost imperative. However, the instruction offers a very flexible way to populate SIMD registers with data elements coming from non-consecutive memory locations. As we will discuss within this article, the instruction can achieve the same performance as the instruction, if applied properly. To enable the proper usage, we outline a novel access pattern allowing fine-grained, partition-based SIMD implementations. Then, we apply this partition-based SIMD processing to two representative examples from columnar database systems to experimentally demonstrate the applicability and efficiency of our new access pattern.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIMDified Data Processing - Foundations, Abstraction, and Advanced Techniques;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3