Lock-Free Transactional Transformation for Linked Data Structures

Author:

Zhang Deli1,Laborde Pierre2,Lebanoff Lance2,Dechev Damian2

Affiliation:

1. Microsoft, Redmond, WA

2. University of Central Florida, Orlando, FL, USA

Abstract

Nonblocking data structures allow scalable and thread-safe access to shared data. They provide individual operations that appear to execute atomically. However, it is often desirable to execute multiple operations atomically in a transactional manner. Previous solutions, such as Software Transactional Memory (STM) and transactional boosting, manage transaction synchronization separately from the underlying data structure’s thread synchronization. Although this reduces programming effort, it leads to overhead associated with additional synchronization and the need to rollback aborted transactions. In this work, we present a new methodology for transforming high-performance lock-free linked data structures into high-performance lock-free transactional linked data structures without revamping the data structures’ original synchronization design. Our approach leverages the semantic knowledge of the data structure to eliminate the overhead of false conflicts and rollbacks. We encapsulate all operations, operands, and transaction status in a transaction descriptor, which is shared among the nodes accessed by the same transaction. We coordinate threads to help finish the remaining operations of delayed transactions based on their transaction descriptors. When a transaction fails, we recover the correct abstract state by reversely interpreting the logical status of a node. We also present an obstruction-free version of our algorithm that can be applied to dynamic execution scenarios and an example of our approach applied to a hash map. In our experimental evaluation using transactions with randomly generated operations, our lock-free transactional data structures outperform the transactional boosted ones by 70% on average. They also outperform the alternative STM-based approaches by a factor of 2 to 13 across all scenarios. More importantly, we achieve 4,700 to 915,000 times fewer spurious aborts than the alternatives.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modelling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lock-Free Concurrent Smart Contracts;2024 IEEE International Conference on Blockchain and Cryptocurrency (ICBC);2024-05-27

2. C4: verified transactional objects;Proceedings of the ACM on Programming Languages;2022-04-29

3. Semantic Conflict Detection for Transactional Data Structure Libraries;Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures;2021-07-06

4. PETRA;ACM Transactions on Architecture and Code Optimization;2021-03

5. Multi-Gigabit CO-OFDM System over SMF and MMF Links for 5G URLLC Backhaul Network;Computers, Materials & Continua;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3