PETRA

Author:

Izadpanah Ramin1,Peterson Christina1,Solihin Yan1,Dechev Damian1

Affiliation:

1. University of Central Florida, Orlando, FL, USA

Abstract

Emerging byte-addressable Non-Volatile Memories (NVMs) enable persistent memory where process state can be recovered after crashes. To enable applications to rely on persistent data, durable data structures with failure-atomic operations have been proposed. However, they lack the ability to allow users to execute a sequence of operations as transactions. Meanwhile, persistent transactional memory (PTM) has been proposed by adding durability to Software Transactional Memory (STM). However, PTM suffers from high performance overheads and low scalability due to false aborts, logging, and ordering constraints on persistence. In this article, we propose PETRA, a new approach for constructing persistent transactional linked data structures. PETRA natively supports transactions, but unlike PTM, relies on the high-level information from the data structure semantics. This gives PETRA unique advantages in the form of high performance and high scalability. Our experimental results using various benchmarks demonstrate the scalability of PETRA in all workloads and transaction sizes. PETRA outperforms the state-of-the-art PTMs by an order of magnitude in transactions of size greater than one, and demonstrates superior performance in transactions of size one.

Funder

Sandia National Laboratories

NSF

National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc.

U.S. Department of Energy's National Nuclear Security Administration

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Advancements of Real-Time Analytics Architecture Components;Computational Methods and Data Engineering;2022-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3