Affiliation:
1. Computer Science Department, Stanford University, Stanford, California
Abstract
Detecting changes by comparing data snapshots is an important requirement for difference queries, active databases, and version and configuration management. In this paper we focus on detecting meaningful changes in hierarchically structured data, such as nested-object data. This problem is much more challenging than the corresponding one for relational or flat-file data. In order to describe changes better, we base our work not just on the traditional “atomic” insert, delete, update operations, but also on operations that move an entire sub-tree of nodes, and that copy an entire sub-tree. These operations allows us to describe changes in a semantically more meaningful way. Since this change detection problem is
NP
-hard, in this paper we present a heuristic change detection algorithm that yields close to “minimal” descriptions of the changes, and that has fewer restrictions than previous algorithms. Our algorithm is based on transforming the change detection problem to a problem of computing a minimum-cost edge cover of a bipartite graph. We study the quality of the solution produced by our algorithm, as well as the running time, both analytically and experimentally.
Publisher
Association for Computing Machinery (ACM)
Subject
Information Systems,Software
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献