Explaining Dataset Changes for Semantic Data Versioning with Explain-Da-V

Author:

Shraga Roee1,Miller Renée J.1

Affiliation:

1. Northeastern University, Boston, MA, USA

Abstract

In multi-user environments in which data science and analysis is collaborative, multiple versions of the same datasets are generated. While managing and storing data versions has received some attention in the research literature, the semantic nature of such changes has remained under-explored. In this work, we introduce Explain-Da-V, a framework aiming to explain changes between two given dataset versions. Explain-Da-V generates explanations that use data transformations to explain changes. We further introduce a set of measures that evaluate the validity, generalizability, and explainability of these explanations. We empirically show, using an adapted existing benchmark and a newly created benchmark, that Explain-Da-V generates better explanations than existing data transformation synthesis methods.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference101 articles.

1. 2022. Auto-pipeline benchmark. https://gitlab.com/jwjwyoung/autopipeline-benchmarks. accessed on Feb 7, 2023 . 2022. Auto-pipeline benchmark. https://gitlab.com/jwjwyoung/autopipeline-benchmarks. accessed on Feb 7, 2023.

2. 2022. AutoPandas Implementation . https://github.com/rbavishi/autopandas. accessed on Feb 7, 2023 . 2022. AutoPandas Implementation. https://github.com/rbavishi/autopandas. accessed on Feb 7, 2023.

3. 2022. Decision Trees . https://scikit-learn.org/stable/modules/tree.html. accessed on Feb 7, 2023 . 2022. Decision Trees. https://scikit-learn.org/stable/modules/tree.html. accessed on Feb 7, 2023.

4. 2022. Explanation Example . https://github.com/shraga89/ExplainDaV/blob/main/Explanation_Example.md. accessed on Feb 7, 2023 . 2022. Explanation Example. https://github.com/shraga89/ExplainDaV/blob/main/Explanation_Example.md. accessed on Feb 7, 2023.

5. 2022. Featuretools. https://www.featuretools.com/. accessed on Feb 7, 2023 . 2022. Featuretools. https://www.featuretools.com/. accessed on Feb 7, 2023.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key Insights from a Feature Discovery User Study;Proceedings of the 2024 Workshop on Human-In-the-Loop Data Analytics;2024-06-14

2. DATALORE: Can a Large Language Model Find All Lost Scrolls in a Data Repository?;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Gen-T: Table Reclamation in Data Lakes;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Discovering Functional Dependencies through Hitting Set Enumeration;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3