METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection

Author:

Zhu Jiaqi1,Cai Shaofeng2,Deng Fang1,Ooi Beng Chin2,Zhang Wenqiao3

Affiliation:

1. Beijing Institute of Technology

2. National University of Singapore

3. Zhejiang University

Abstract

Real-time analytics and decision-making require online anomaly detection (OAD) to handle drifts in data streams efficiently and effectively. Unfortunately, existing approaches are often constrained by their limited detection capacity and slow adaptation to evolving data streams, inhibiting their efficacy and efficiency in handling concept drift , which is a major challenge in evolving data streams. In this paper, we introduce METER, a novel dynamic concept adaptation framework that introduces a new paradigm for OAD. METER addresses concept drift by first training a base detection model on historical data to capture recurring central concepts , and then learning to dynamically adapt to new concepts in data streams upon detecting concept drift. Particularly, METER employs a novel dynamic concept adaptation technique that leverages a hypernetwork to dynamically generate the parameter shift of the base detection model, providing a more effective and efficient solution than conventional retraining or fine-tuning approaches. Further, METER incorporates a lightweight drift detection controller, underpinned by evidential deep learning, to support robust and interpretable concept drift detection. We conduct an extensive experimental evaluation, and the results show that METER significantly outperforms existing OAD approaches in various application scenarios.

Publisher

Association for Computing Machinery (ACM)

Reference94 articles.

1. 1999. KDD Cup Dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed:2023-07.

2. Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization

3. Unsupervised real-time anomaly detection for streaming data

4. Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly detection using reconstruction probability. Special lecture on IE 2, 1 (2015), 1--18.

5. Fabrizio Angiulli and Fabio Fassetti. 2007. Detecting distance-based outliers in streams of data. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. 811--820.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3