Distinct Light and Clock Modulation of Cytosolic Free Ca2+ Oscillations and RhythmicCHLOROPHYLL A/B BINDING PROTEIN2Promoter Activity inArabidopsis

Author:

Xu Xiaodong1,Hotta Carlos T.2,Dodd Antony N.2,Love John2,Sharrock Robert3,Lee Young Wha1,Xie Qiguang1,Johnson Carl H.1,Webb Alex A.R.2

Affiliation:

1. Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235

2. Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom

3. Department of Plant Sciences, Montana State University, Bozeman, Montana 59717

Abstract

AbstractPlants have circadian oscillations in the concentration of cytosolic free calcium ([Ca2+]cyt). To dissect the circadian Ca2+-signaling network, we monitored circadian [Ca2+]cyt oscillations under various light/dark conditions (including different spectra) in Arabidopsis thaliana wild type and photoreceptor and circadian clock mutants. Both red and blue light regulate circadian oscillations of [Ca2+]cyt. Red light signaling is mediated by PHYTOCHROME B (PHYB). Blue light signaling occurs through the redundant action of CRYPTOCHROME1 (CRY1) and CRY2. Blue light also increases the basal level of [Ca2+]cyt, and this response requires PHYB, CRY1, and CRY2. Light input into the oscillator controlling [Ca2+]cyt rhythms is gated by EARLY FLOWERING3. Signals generated in the dark also regulate the circadian behavior of [Ca2+]cyt. Oscillations of [Ca2+]cyt and CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are dependent on the rhythmic expression of LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK-ASSOCIATED1, but [Ca2+]cyt and CAB2 promoter activity are uncoupled in the timing of cab1 (toc1-1) mutant but not in toc1-2. We suggest that the circadian oscillations of [Ca2+]cyt and CAB2 promoter activity are regulated by distinct oscillators with similar components that are used in a different manner and that these oscillators may be located in different cell types in Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3