Time of day and genotype sensitivity adjust molecular responses to temperature stress in sorghum

Author:

Bonnot Titouan1,Somayanda Impa2,Jagadish S. V. Krishna2,Nagel Dawn H.1ORCID

Affiliation:

1. Department of Botany and Plant Sciences University of California, Riverside Riverside California 92507 USA

2. Department of Plant and Soil Science Texas Tech University Lubbock Texas 79409‐2122 USA

Abstract

SUMMARYSorghum is one of the four major C4 crops that are considered to be tolerant to environmental extremes. Sorghum shows distinct growth responses to temperature stress depending on the sensitivity of the genetic background. About half of the transcripts in sorghum exhibit diurnal rhythmic expressions emphasizing significant coordination with the environment. However, an understanding of how molecular dynamics contribute to genotype‐specific stress responses in the context of the time of day is not known. We examined whether temperature stress and the time of day impact the gene expression dynamics in thermo‐sensitive and thermo‐tolerant sorghum genotypes. We found that time of day is highly influencing the temperature stress responses, which can be explained by the rhythmic expression of most thermo‐responsive genes. This effect is more pronounced in thermo‐tolerant genotypes, suggesting a stronger regulation of gene expression by the time of day and/or by the circadian clock. Genotypic differences were mostly observed on average gene expression levels, which may be responsible for contrasting sensitivities to temperature stress in tolerant versus susceptible sorghum varieties. We also identified groups of genes altered by temperature stress in a time‐of‐day and genotype‐specific manner. These include transcriptional regulators and several members of the Ca2+‐binding EF‐hand protein family. We hypothesize that expression variation of these genes between genotypes along with time‐of‐day independent regulation may contribute to genotype‐specific fine‐tuning of thermo‐responsive pathways. These findings offer a new opportunity to selectively target specific genes in efforts to develop climate‐resilient crops based on their time‐of‐day and genotype variation responses to temperature stress.

Funder

Division of Integrative Organismal Systems

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3