A non-cell-autonomous circadian rhythm of bioluminescence reporter activities in individual duckweed cells

Author:

Watanabe Emiri12ORCID,Muranaka Tomoaki13ORCID,Nakamura Shunji14ORCID,Isoda Minako1ORCID,Horikawa Yu1ORCID,Aiso Tsuyoshi1ORCID,Ito Shogo1ORCID,Oyama Tokitaka1ORCID

Affiliation:

1. Department of Botany, Graduate School of Science, Kyoto University , Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan

2. Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba 277-8561 , Japan

3. Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601 , Japan

4. Department of Biological Sciences, Graduate School of Science, The University of Tokyo , Tokyo, 113-0033 , Japan

Abstract

Abstract The circadian clock is responsible for the temporal regulation of various physiological processes in plants. Individual cells contain a circadian oscillator consisting of a clock gene circuit that coordinates physiological rhythms within the plant body in an orderly manner. The coordination of time information has been studied from the perspective of cell–cell local coupling and long-distance communication between tissues based on the view that the behavior of circadian oscillators represents physiological rhythms. Here, we report the cellular circadian rhythm of bioluminescence reporters that are not governed by the clock gene circuit in expressing cells. We detected cellular bioluminescence rhythms with different free-running periods in the same cells using a dual-color bioluminescence monitoring system in duckweed (Lemna minor) transfected with Arabidopsis CIRCADIAN CLOCK ASSOCIATED 1::luciferace+ (AtCCA1::LUC+) and Cauliflower mosaic virus 35S::modified click-beetle red-color luciferase (CaMV35S::PtRLUC) reporters. Co-transfection experiments with the two reporters and a clock gene-overexpressing effector revealed that the AtCCA1::LUC+ rhythm, but not the CaMV35S::PtRLUC rhythm, was altered in cells with a dysfunctional clock gene circuit. This indicated that the AtCCA1::LUC+ rhythm is a direct output of the cellular circadian oscillator, whereas the CaMV35S::PtRLUC rhythm is not. After plasmolysis, the CaMV35S::PtRLUC rhythm disappeared, whereas the AtCCA1::LUC+ rhythm persisted. This suggests that the CaMV35S::PtRLUC bioluminescence has a symplast/apoplast-mediated circadian rhythm generated at the organismal level. The CaMV35S::PtRLUC-type bioluminescence rhythm was also observed when other bioluminescence reporters were expressed. These results reveal that the plant circadian system consists of both cell-autonomous and noncell-autonomous rhythms that are unaffected by cellular oscillators.

Funder

Japan Society for the Promotion of Science KAKENHI

Japan Science and Technology Agency

JST SATREPS

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3