Scaling‐up the biodiversity–ecosystem functioning relationship: the effect of environmental heterogeneity on transgressive overyielding

Author:

Gamfeldt Lars123ORCID,Hagan James G.12,Farewell Anne45,Palm Martin45ORCID,Warringer Jonas45,Roger Fabian6ORCID

Affiliation:

1. Dept of Marine Sciences, Univ. of Gothenburg Gothenburg Sweden

2. Gothenburg Global Biodiversity Centre Gothenburg Sweden

3. Centre for Sea and Society Gothenburg Sweden

4. Dept of Chemistry and Molecular Biology, Univ. of Gothenburg Gothenburg Sweden

5. Centre for Antibiotic Resistance Research (CARe), Univ. of Gothenburg Gothenburg Sweden

6. Centre for Environmental and Climate Research, Lund Univ. Lund Sweden

Abstract

Knowledge of how biodiversity sustains ecosystem function comes predominantly from studies focused on small spatial scales. Thus, we know relatively little about the role of biodiversity at larger scales of space and time where habitats become increasingly heterogeneous. Efforts to upscale the relationship between biodiversity and function have yielded inconclusive results. Given that increasing habitat heterogeneity is a ubiquitous consequence of increasing spatial scale, we asked: as habitat heterogeneity increases, can single species continue to maintain ecosystem function? Or, does transgressive overyielding (functioning of species mixture divided by the functioning of the highest functioning single species) change with habitat heterogeneity? We addressed this using a combination of computer simulations, an experiment and a meta‐analysis. The three parts followed the same rationale: habitat heterogeneity was increased by aggregating local habitats with different conditions into larger and more heterogeneous landscapes. The computer simulations showed that, on average, transgressive overyielding increased with habitat heterogeneity because monoculture functioning decreased with habitat heterogeneity. We tested this expectation experimentally by varying the strain richness from one to five species across 10800 bacterial communities in five different habitats defined by sub‐inhibitory concentrations of antibiotics. On average, the experimental results concurred with the simulations. We tested the generality of this result using a meta‐analysis of 26 published experiments that manipulated habitat conditions and species richness. This confirmed that transgressive overyielding tended to increase with habitat heterogeneity but only when species were specialised to different habitats and were not inhibited in mixtures by negative species interactions. This was not the case in several experiments used in our meta‐analysis where one species maximised functioning across all habitats, contrary to the assumptions of many ecological models. Our results illustrate the importance of biodiversity at larger spatial scales with more heterogeneity but also highlights contingencies that this pattern depends on.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3