Compensation alters estimates of the number of species required to maintain ecosystem functioning across an emersion gradient: A case study with intertidal macroalgae

Author:

Hagan James G.123ORCID

Affiliation:

1. Department of Marine Sciences University of Gothenburg Gothenburg Sweden

2. Gothenburg Global Biodiversity Centre Gothenburg Sweden

3. Community Ecology Lab, Department of Biology Vrije Universiteit Brussel (VUB) Brussels Belgium

Abstract

Abstract Whether more species are required to maintain ecosystem functioning as spatial scale increases or across environmental gradients has frequently been studied by examining whether different species drive ecosystem functioning in different sites. However, this approach does rule out the counterfactual scenario where a few species could potentially maintain ecosystem functioning across sites as this requires examining which species can (or cannot) compensate for the loss of others. Here, I used an observational study and a field‐based transplant experiment to examine the effects of species loss on biomass productivity in an intertidal marine macroalgal system. I calculated the number of species required to maintain biomass productivity across four depth zones reflecting a water emersion gradient using two commonly used observational approaches. Then, I combined hypothetical simulated extinction scenarios with field‐based transplant data of relative growth rates of all species across the four depth zones to explore how the number of species required to maintain biomass productivity across depth zones changed under counterfactual scenarios where species compensated for species loss. The observational analyses suggested that between three and four species were required to maintain productivity across the depth zones. The simulated extinction scenarios did not. Rather, decreases in biomass productivity due to the loss of some species (e.g. Fucus spiralis, Ascophyllum nodosum) were easily compensated by other species (e.g. Fucus vesiculosus). However, for some species like F. vesiculosus, the extinction simulations suggested that compensation would be unlikely. Commonly used observational approaches may overestimate the number of species required to maintain ecosystem functioning across environmental gradients and spatial scales. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Vetenskapsrådet

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3