Predicting leaf traits across functional groups using reflectance spectroscopy

Author:

Kothari Shan1ORCID,Beauchamp‐Rioux Rosalie1ORCID,Blanchard Florence1,Crofts Anna L.2ORCID,Girard Alizée1,Guilbeault‐Mayers Xavier1ORCID,Hacker Paul W.3ORCID,Pardo Juliana1ORCID,Schweiger Anna K.14ORCID,Demers‐Thibeault Sabrina1,Bruneau Anne1ORCID,Coops Nicholas C.3ORCID,Kalacska Margaret5ORCID,Vellend Mark2ORCID,Laliberté Etienne1ORCID

Affiliation:

1. Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale Université de Montréal 4101 Sherbrooke Est Montréal QC H1X 2B2 Canada

2. Département de Biologie Université de Sherbrooke Sherbrooke QC J1K 2X9 Canada

3. Department of Forest Resources Management University of British Columbia Vancouver BC V6T 1Z4 Canada

4. Department of Geography University of Zurich Zürich 8057 Switzerland

5. Department of Geography McGill University Montréal QC H3A 0B9 Canada

Abstract

Summary Plant ecologists use functional traits to describe how plants respond to and influence their environment. Reflectance spectroscopy can provide rapid, non‐destructive estimates of leaf traits, but it remains unclear whether general trait‐spectra models can yield accurate estimates across functional groups and ecosystems. We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples from 103 species. These samples span a large share of known trait variation and represent several functional groups and ecosystems, mainly in eastern Canada. We used partial least‐squares regression (PLSR) to build empirical models for estimating traits from spectra. Within the dataset, our PLSR models predicted traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) with high accuracy (R2 > 0.85; %RMSE < 10). Models for most chemical traits, including pigments, carbon fractions, and major nutrients, showed intermediate accuracy (R2 = 0.55–0.85; %RMSE = 12.7–19.1). Micronutrients such as Cu and Fe showed the poorest accuracy. In validation on external datasets, models for traits such as LMA and LDMC performed relatively well, while carbon fractions showed steep declines in accuracy. We provide models that produce fast, reliable estimates of several functional traits from leaf spectra. Our results reinforce the potential uses of spectroscopy in monitoring plant function around the world.

Funder

Canada Foundation for Innovation

Fonds de recherche du Québec – Nature et technologies

Natural Sciences and Engineering Research Council of Canada

Université de Montréal

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3