Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring

Author:

Arroyo-Mora J.ORCID,Kalacska MargaretORCID,Inamdar Deep,Soffer Raymond,Lucanus Oliver,Gorman Janine,Naprstek TomasORCID,Schaaf Erica,Ifimov Gabriela,Elmer Kathryn,Leblanc George

Abstract

Hyperspectral remote sensing provides a wealth of data essential for vegetation studies encompassing a wide range of applications (e.g., species diversity, ecosystem monitoring, etc.). The development and implementation of UAV-based hyperspectral systems have gained popularity over the last few years with novel efforts to demonstrate their operability. Here we describe the design, implementation, testing, and early results of the UAV-μCASI system, which showcases a relatively new hyperspectral sensor suitable for ecological studies. The μCASI (288 spectral bands) was integrated with a custom IMU-GNSS data recorder built in-house and mounted on a commercially available hexacopter platform with a gimbal to maximize system stability and minimize image distortion. We deployed the UAV-μCASI at three sites with different ecological characteristics across Canada: The Mer Bleue peatland, an abandoned agricultural field on Ile Grosbois, and the Cowichan Garry Oak Preserve meadow. We examined the attitude data from the flight controller to better understand airframe motion and the effectiveness of the integrated Differential Real Time Kinematic (RTK) GNSS. We describe important aspects of mission planning and show the effectiveness of a bundling adjustment to reduce boresight errors as well as the integration of a digital surface model for image geocorrection to account for parallax effects at the Mer Bleue test site. Finally, we assessed the quality of the radiometrically and atmospherically corrected imagery from the UAV-μCASI and found a close agreement (<2%) between the image derived reflectance and in-situ measurements. Overall, we found that a flight speed of 2.7 m/s, careful mission planning, and the integration of the bundling adjustment were important system characteristics for optimizing the image quality at an ultra-high spatial resolution (3–5 cm). Furthermore, environmental considerations such as wind speed (<5 m/s) and solar illumination also play a critical role in determining image quality. With the growing popularity of “turnkey” UAV-hyperspectral systems on the market, we demonstrate the basic requirements and technical challenges for these systems to be fully operational.

Funder

National Research Council Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3