Rapid estimates of leaf litter chemistry using reflectance spectroscopy

Author:

Kothari Shan1ORCID,Hobbie Sarah E.2,Cavender-Bares Jeannine12

Affiliation:

1. Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, US

2. Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, US

Abstract

Measuring the chemical traits of leaf litter is important for understanding plants’ influence on nutrient cycles, including through nutrient resorption and litter decomposition, but conventional leaf trait measurements are often destructive and labor-intensive. Here, we develop and evaluate the performance of partial least-squares regression models that use reflectance spectra of intact or ground leaves to estimate leaf litter traits, including carbon and nitrogen concentration, carbon fractions, and leaf mass per area (LMA). Our analyses included more than 300 samples of senesced foliage from 11 species of temperate trees, including both needleleaf and broadleaf species. Across all samples, we could predict each trait with moderate-to-high accuracy from both intact-leaf litter spectra (validation R2 = 0.543–0.941; %root mean squared error (RMSE) = 7.49–18.5) and ground-leaf litter spectra (validation R2 = 0.491–0.946; %RMSE = 7.00–19.5). Notably, intact-leaf spectra yielded better predictions of LMA. Our results support the feasibility of building models to estimate multiple chemical traits from leaf litter of a range of species. In particular, intact-leaf spectral models allow non-destructive trait estimation in a matter of seconds, which could enable researchers to measure the same leaves over time in studies of nutrient resorption.

Funder

Division of Environmental Biology

National Science Foundation Graduate Research Fellowship Program

Division of Biological Infrastructure

University of Minnesota

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3