Affiliation:
1. Department of Soil and Crop Sciences Texas A&M University College Station TX 77843 USA
2. USDA‐ARS 302‐A Curtis Hall Columbia MO 65211 USA
Abstract
Summary
Quantifying the temporal or longitudinal growth dynamics of crops in diverse environmental conditions is crucial for understanding plant development, requiring further modeling techniques.
In this study, we analyzed the growth patterns of two different maize (Zea mays L.) populations using high‐throughput phenotyping with a maize population consisting of 515 recombinant inbred lines (RILs) grown in Texas and a hybrid population containing 1090 hybrids grown in Missouri.
Two models, Gaussian peak and functional principal component analysis (FPCA), were employed to study the Normalized Green–Red Difference Index (NGRDI) scores. The Gaussian peak model showed strong correlations (c. 0.94 for RILs and c. 0.97 for hybrids) between modeled and non‐modeled temporal trajectories. Functional principal component analysis differentiated NGRDI trajectories in RILs under different conditions, capturing substantial variability (75%, 20%, and 5% for RILs; 88% and 12% for hybrids).
By comparing these models with conventional BLUP values, common quantitative trait loci (QTLs) were identified, containing candidate genes of brd1, pin11, zcn8 and rap2. The harmony between these loci's additive effects and growing degree days, as well as the differentiation of RIL haplotypes across growth stages, underscores the significant interplay of these loci in driving plant development. These findings contribute to advancing understanding of plant–environment interactions and have implications for crop improvement strategies.
Funder
National Institute of Food and Agriculture