Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data

Author:

Adak Alper1ORCID,Kang Myeongjong2ORCID,Anderson Steven L3ORCID,Murray Seth C1ORCID,Jarquin Diego4ORCID,Wong Raymond K W2ORCID,Katzfuß Matthias2ORCID

Affiliation:

1. Department of Soil and Crop Sciences, Texas A&M University , College Station, TX 77843-2474 , USA

2. Department of Statistics, Texas A&M University , College Station, TX 77843 , USA

3. Syngenta , Naples, FL 34114 , USA

4. Agronomy Department, University of Florida , Gainesville, FL 32611 , USA

Abstract

AbstractHigh-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.

Funder

USDA

NIFA

AFRI

Eugene Butler Endowed Chair

Texas A&M AgriLife Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3