Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions

Author:

Adak Alper1ORCID,Murray Seth C1ORCID,Anderson Steven L2ORCID

Affiliation:

1. Department of Soil and Crop Sciences, Texas A&M University , College Station, TX 77843-2474 , USA

2. Syngenta , Naples, FL, 34114 , USA

Abstract

Abstract A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red–green–blue (RGB) bands over 15 growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outperformed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multiple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.

Funder

USDA–NIFA–AFRI

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3