Temporal Vegetation Indices and Plant Height from Remotely Sensed Imagery Can Predict Grain Yield and Flowering Time Breeding Value in Maize via Machine Learning Regression

Author:

Adak AlperORCID,Murray Seth CORCID,Božinović Sofija,Lindsey Regan,Nakasagga Shakirah,Chatterjee Sumantra,Anderson Steven L.ORCID,Wilde Scott

Abstract

Unoccupied aerial system (UAS; i.e., drone equipped with sensors) field-based high-throughput phenotyping (HTP) platforms are used to collect high quality images of plant nurseries to screen genetic materials (e.g., hybrids and inbreds) throughout plant growth at relatively low cost. In this study, a set of 100 advanced breeding maize (Zea mays L.) hybrids were planted at optimal (OHOT trial) and delayed planting dates (DHOT trial). Twelve UAS surveys were conducted over the trials throughout the growing season. Fifteen vegetative indices (VIs) and the 99th percentile canopy height measurement (CHMs) were extracted from processed UAS imagery (orthomosaics and point clouds) which were used to predict plot-level grain yield, days to anthesis (DTA), and silking (DTS). A novel statistical approach utilizing a nested design was fit to predict temporal best linear unbiased predictors (TBLUP) for the combined temporal UAS data. Our results demonstrated machine learning-based regressions (ridge, lasso, and elastic net) had from 4- to 9-fold increases in the prediction accuracies and from 13- to 73-fold reductions in root mean squared error (RMSE) compared to classical linear regression in prediction of grain yield or flowering time. Ridge regression performed best in predicting grain yield (prediction accuracy = ~0.6), while lasso and elastic net regressions performed best in predicting DTA and DTS (prediction accuracy = ~0.8) consistently in both trials. We demonstrated that predictor variable importance descended towards the terminal stages of growth, signifying the importance of phenotype collection beyond classical terminal growth stages. This study is among the first to demonstrate an ability to predict yield in elite hybrid maize breeding trials using temporal UAS image-based phenotypes and supports the potential benefit of phenomic selection approaches in estimating breeding values before harvest.

Funder

U.S. Department of Agriculture

National Institute of Food and Agriculture

AFRI

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3