Abstract
Unoccupied aerial system (UAS; i.e., drone equipped with sensors) field-based high-throughput phenotyping (HTP) platforms are used to collect high quality images of plant nurseries to screen genetic materials (e.g., hybrids and inbreds) throughout plant growth at relatively low cost. In this study, a set of 100 advanced breeding maize (Zea mays L.) hybrids were planted at optimal (OHOT trial) and delayed planting dates (DHOT trial). Twelve UAS surveys were conducted over the trials throughout the growing season. Fifteen vegetative indices (VIs) and the 99th percentile canopy height measurement (CHMs) were extracted from processed UAS imagery (orthomosaics and point clouds) which were used to predict plot-level grain yield, days to anthesis (DTA), and silking (DTS). A novel statistical approach utilizing a nested design was fit to predict temporal best linear unbiased predictors (TBLUP) for the combined temporal UAS data. Our results demonstrated machine learning-based regressions (ridge, lasso, and elastic net) had from 4- to 9-fold increases in the prediction accuracies and from 13- to 73-fold reductions in root mean squared error (RMSE) compared to classical linear regression in prediction of grain yield or flowering time. Ridge regression performed best in predicting grain yield (prediction accuracy = ~0.6), while lasso and elastic net regressions performed best in predicting DTA and DTS (prediction accuracy = ~0.8) consistently in both trials. We demonstrated that predictor variable importance descended towards the terminal stages of growth, signifying the importance of phenotype collection beyond classical terminal growth stages. This study is among the first to demonstrate an ability to predict yield in elite hybrid maize breeding trials using temporal UAS image-based phenotypes and supports the potential benefit of phenomic selection approaches in estimating breeding values before harvest.
Funder
U.S. Department of Agriculture
National Institute of Food and Agriculture
AFRI
Subject
General Earth and Planetary Sciences