GIS‐based G × E modeling of maize hybrids through enviromic markers engineering

Author:

Resende Rafael T.12ORCID,Xavier Alencar34ORCID,Silva Pedro Italo T.3ORCID,Resende Marcela P. M.1ORCID,Jarquin Diego5ORCID,Marcatti Gustavo E.26ORCID

Affiliation:

1. Plant Breeding Sector, School of Agronomy (EA) Federal University of Goiás (UFG) Av. Esperança, s/n, Samambaia Campus Goiânia GO 74690‐900 Brazil

2. TheCROP, A Precision Breeding Project Av. Esperança, n° 1533, FUNAPE, Samambaia Technological Park, Samambaia Campus – UFG Goiânia GO 74690‐612 Brazil

3. Corteva Agriscience 8305 NW 62ndAve Johnston IA 50131 USA

4. Purdue University 915 Mitch Daniels Blvd West Lafayette IN 47907 USA

5. University of Florida 1604 McCarty Drive G052B McCarty Hall D Gainesville FL 32611 USA

6. Forest Engineering Department Federal University of São João del Rei (UFSJ) Sete Lagoas Campus, MG‐424 Highway, Km 47 Sete Lagoas MG 35701‐970 Brazil

Abstract

Summary Through enviromics, precision breeding leverages innovative geotechnologies to customize crop varieties to specific environments, potentially improving both crop yield and genetic selection gains. In Brazil's four southernmost states, data from 183 distinct geographic field trials (also accounting for 2017–2021) covered information on 164 genotypes: 79 phenotyped maize hybrid genotypes for grain yield and their 85 nonphenotyped parents. Additionally, 1342 envirotypic covariates from weather, soil, sensor‐based, and satellite sources were collected to engineer 10 K synthetic enviromic markers via machine learning. Soil, radiation light, and surface temperature variations remarkably affect differential genotype yield, hinting at ecophysiological adjustments including evapotranspiration and photosynthesis. The enviromic ensemble‐based random regression model showcases superior predictive performance and efficiency compared to the baseline and kernel models, matching the best genotypes to specific geographic coordinates. Clustering analysis has identified regions that minimize genotype‐environment (G × E) interactions. These findings underscore the potential of enviromics in crafting specific parental combinations to breed new, higher‐yielding hybrid crops. The adequate use of envirotypic information can enhance the precision and efficiency of maize breeding by providing important inputs about the environmental factors that affect the average crop performance. Generating enviromic markers associated with grain yield can enable a better selection of hybrids for specific environments.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3