The efficacy of preharvest application of electrolyzed water and chemical sanitizers against foodborne pathogen surrogates on leafy green vegetables

Author:

Shang Hongshan12,Huang Linxi1,Stanley Roger3ORCID,Deaker Rosalind2ORCID,Bowman John P.1ORCID

Affiliation:

1. Centre for Food Safety and Innovation Tasmanian Institute of Agriculture, University of Tasmania Sandy Bay Tasmania Australia

2. School of Life and Environmental Sciences, Faculty of Science The University of Sydney Camperdown New South Wales Australia

3. Centre for Food Innovation Tasmanian Institute of Agriculture, University of Tasmania Launceston Tasmania Australia

Abstract

AbstractPreharvest control strategies, to reduce or eliminate pathogenic bacteria in leafy vegetables that may be consumed raw, may provide additional food safety protection and shelf life quality extension beyond what is possible to achieve with postharvest sanitation alone. The aim of this study was to characterize the efficacy and effect of contact time of electrolyzed water (e‐water), 1‐bromo‐3‐chloro‐5‐dimethylhydantoin (BCDMH), and peracetic acid (PAA) at 80 and 150 ppm against pathogen surrogates Escherichia coli M23 (E. coli M23)and Listeria innocua ATCC 33090 (L. innocua), and a representative spoilage microorganism Pseudomonas fluorescens (P. fluorescens) on leafy green vegetables (LGV) mizuna, rocket (arugula), and red chard. Each of the leafy vegetables has a distinctly different leaf architectures that could alter the effectiveness of preharvest sanitation treatments. e‐Water, BCDMH and PAA were equally effective in inactivating plant total viable count, E. coli M23, L. innocua and P. fluorescens (reduction compared to water control—0.5–4.0 log CFU/g). On average an additional 0.8 (0.4–1.1) log CFU/g inactivation was obtained by increasing sanitizer contact time from 30 min to 2 h, whereas increasing sanitizer concentrations produced, at maximum, an extra 0.5 log CFU/g inactivation. These findings suggest that e‐water, BCDMH, and PAA are all useful for in‐field preharvest application on a wide range of plants and increasing contact time rather than concentration improves sanitation efficacy.

Funder

Australian Research Council

Publisher

Wiley

Subject

Microbiology,Food Science,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3