Performance assessment of peat rail subgrade before and after mass stabilization

Author:

Wheeler Lisa N.11,Take W. Andy11,Hoult Neil A.11

Affiliation:

1. Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada.

Abstract

Railway tracks over peat subgrades can experience large ground deformations, increased pore-water pressures, formation of pumping holes, and pumping of fines during the passage of trains, which can lead to accelerated track deterioration and risk of derailment. One approach to mitigate these issues is to improve the subgrade stiffness using mass stabilization, which involves mixing a binding agent, such as cement, into a soil to improve its physical properties. This paper describes the development and use of a method to calculate trackbed modulus to quantify the improvement due to mass stabilization at a site with peat subgrade. Track modulus was calculated using in-service freight trains by measuring track displacements using digital image correlation and wheel loads from a nearby wheel impact load detector. Because of the voids that existed between the rail, sleepers, and ballast it was found that using displacements of the ballast crib to calculate the trackbed modulus, instead of the overall track modulus using rail or sleeper displacements, provided a way to quantify the improvement of the subgrade that was not affected by the presence of voids. The results indicate the post-rehabilitation trackbed modulus was double the original baseline value for the track section, indicating that mass stabilization can be an effective rehabilitation strategy to improve the stiffness of problematic peat subgrades.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference25 articles.

1. Innovative Remote Video Monitoring of Railway Track Displacements

2. Monitoring the dynamic displacements of railway track

3. Charenko, A., and Scott, J.F. 1982. The measurement of track modulus. Track Structures Test Facility Progress Report No. 5. CN Rail Research Centre, St. Laurent, Que.

4. An Assessment of Transition Zone Performance

5. Hay, W.W. 1982. Railroad engineering. 2nd ed. John Wiley & Sons.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3