Feature analysis of precipitation-induced subgrade defects on a high-speed rail ballasted track using multiple track inspection data: A case study

Author:

Xiao Junhua12,Bai Yingqi12ORCID,Song Chengjie3,Sun Siqi12,Liu Xiaozhou3

Affiliation:

1. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China

2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China

3. College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China

Abstract

Heavy rainfall has posed a great challenge to the service performance of high-speed rail (HSR) substructure, resulting in a reduction in the ride quality and safety of high-speed trains. To carry out proper repair work for the substructure, it is imperative to realize efficient identification of precipitation-induced subgrade defects. To this end, this paper aims to extract the features of typical precipitation-induced subgrade defects from the multiple track inspection data to provide a basis for defect identification. Firstly, the geotechnical site investigation including Ground Penetrating Radar (GPR) detection, moisture content test, and dynamic cone penetration (DCP) test of a typical defective spot is performed to determine the condition of the subgrade after heavy rainfall; then, the analysis methods of track inspection data are introduced; finally, the track geometry data and carbody acceleration data of four typical defective sections are analyzed, and the time-domain, frequency-domain and discrete wavelet transform (DWT)-based features which are highly correlated with the precipitation-induced subgrade defects are extracted. The results show that the feature indexes extracted from track surface irregularity and carbody vertical acceleration increase significantly after heavy rainfall; the long wavelength components (8 m and above) of both track irregularity and carbody vibration are more sensitive to the subgrade defects, which is reflected by the sharp increase of the DWT-based features at some levels corresponding to long wavelength ranges. The results of defect feature extraction based on the track inspection data agree well with the geotechnical site investigation results, which demonstrate the feasibility of utilizing multiple track inspection data to identify the typical precipitation-induced subgrade defects.

Funder

National Key Research and Development Program of China

General project of the stability support plan for Shenzhen colleges and universities

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3