Mud pumping in high-speed railway: in-situ soil core test and full-scale model testing

Author:

Wan Zhangbo,Bian Xuecheng,Chen Yunmin

Abstract

AbstractMud pumping induced by moving train loads on rainwater-intruded roadbed causes intensive track vibrations and threatens safety of high-speed trains. In this paper, a vehicle–track–subgrade finite element model was established to analyze the dynamic responses of a ballastless track, and results showed that the concrete base and roadbed were detached because of the whipping effect arising from the rainwater intrusion channel. An in-situ soil core test showed that the intruded rainwater accumulated in roadbed to form standing water and saturated the roadbed. The flapping action of the concrete base caused by the whipping effect led to mud formation mixed with fine particles and rainwater, which migrated upward under the pore-water pressure (PWP) gradient. Mud pumping resulted from continuous particle migration in the saturated roadbed under moving train loads: under normal roadbed condition, coarse and fine particles were uniformly distributed in the roadbed; in early period of mud pumping, fine particles migrated downward to bottom of the roadbed because of the rainwater infiltration flow; in middle stage of mud pumping, fine particles migrated upward and gathered at the roadbed surface under PWP gradient; in later period of mud pumping, fine particles were entrained and removed with the dissipation of excess PWP. Moreover, a full-scale physical model was established to reproduce mud pumping, and polyurethane injection remediation against mud pumping was validated on this physical model. The remediation method was applied to an in-situ mud pumping. The deviation of the vertical track profile reduced remarkably and remained at a low level within half a year, showing a good long-term service performance of the polyurethane remediated roadbed.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3