Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentration in Swedish lakes: implications for patterns in primary production

Author:

Seekell David A.1,Lapierre Jean-François2,Karlsson Jan1

Affiliation:

1. Department of Ecology and Environmental Science, Umeå University, Umeå 90187, Sweden.

2. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.

Abstract

Dissolved organic carbon (DOC) limits primary production in lakes when present at high concentrations by reducing light availability, but stimulates primary production at lower concentrations by releasing nutrients through photolysis. These dual influences create the potential for threshold relationships between DOC and primary production, but empirical tests for the prevalence of thresholds are scarce. We used Box–Cox regression and environmental monitoring data from 703 subarctic and boreal lakes to assess patterns and potential threshold relationships between light and nutrient availability along gradients of DOC in northern Sweden’s six major watersheds. We found consistent patterns of increasing nutrient concentration and light attenuation with DOC. Further, we identified thresholds (mean = 5.96 mg·L−1) below which nutrient concentrations increased more rapidly than light extinction and above where the opposite occurred. These results suggest consistent patterns in primary production with shifts from nutrient to light limitation with increasing DOC. Accordingly, the thresholds agree with the vertex of the curvilinear relationship between lake primary production and DOC. We estimated that most lakes in Sweden are within ±3 mg·L−1 of the threshold, indicating high potential for changes from positive to negative influences of DOC on primary production if forecasted increases in DOC concentrations due to climate and land cover change are realized.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3