Assessing and predicting the influence of chromophoric dissolved organic matter on light absorption by phytoplankton in boreal lakes

Author:

Ahonen Salla A.1ORCID,Vuorio Kristiina M.2ORCID,Jones Roger I.1ORCID,Hämäläinen Heikki1ORCID,Rantamo Krista1,Tiirola Marja1ORCID,Vähätalo Anssi V.1ORCID

Affiliation:

1. Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland

2. Finnish Environment Institute Helsinki Finland

Abstract

AbstractMany boreal lakes are colored brown due to strong light absorption by chromophoric dissolved organic matter (CDOM), which reduces light penetration into the water column. However, the influence of CDOM on the fraction of photosynthetically utilizable radiation (PUR) absorbed by phytoplankton from the photosynthetically active radiation (PAR) entering the lake (i.e., PUR/PAR) remains largely unknown. Here, we (1) quantified PUR/PAR values and examined the major water quality parameters determining PUR/PAR from 128 sampled boreal lakes, (2) predicted PUR/PAR values for 2250 reference boreal lakes, and (3) estimated the response of PUR/PAR to typical browning trends reported in earlier studies. The PUR/PAR values ranged from 0.4% to 17% in the sampled lakes, and a logarithmic model including CDOM and chlorophyll a (Chl a) concentration was the most parsimonious for predicting PUR/PAR values. Applying the model to the reference lakes, PUR/PAR values ranged from 0.5% to 20% (median 3%). In the model, an increase in CDOM content decreases the PUR/PAR value, but a concurrent increase in Chl a concentration with the CDOM partly compensates the negative effect of CDOM on the PUR/PAR values. Assuming that browning increases both CDOM and Chl a contents, as found for our reference lakes, our model suggests that the decrease in light absorption by phytoplankton in response to a typical degree of browning is only moderate. The moderate response of the PUR/PAR to browning may be explained by photoacclimation of phytoplankton to lowered light availability, and/or an increased loading of nutrients to lakes both leading to higher Chl a concentration.

Funder

Jyväskylän Yliopisto

Academy of Finland

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3