Zooplankton in northern lakes show taxon‐specific responses in fatty acids across climate‐productivity and ecosystem size gradients

Author:

Chaguaceda Fernando1ORCID,Lau Danny C. P.1ORCID,Goedkoop Willem1ORCID,Fadhlaoui Mariem2,Lavoie Isabelle2,Vrede Tobias1ORCID

Affiliation:

1. Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden

2. Institut National de la Recherche Scientifique, Centre Eau Terre Environnement Québec Québec Canada

Abstract

AbstractNorthern lakes are facing rapid environmental alterations—including warming, browning, and/or changes in nutrient concentrations—driven by climate change. These environmental changes can have profound impacts on the synthesis and trophic transfer of polyunsaturated fatty acids (PUFA), which are important biochemical molecules for consumer growth and reproduction. Zooplankton are a key trophic link between phytoplankton and fish, but their biochemical responses to environmental change are not well understood. In this study, we assess the trends in fatty acid (FA) composition of zooplankton taxa among 32 subarctic and temperate lakes across broad climate‐productivity and ecosystem size gradients. We found that genus‐level taxonomy explained most FA variability in zooplankton (54%), suggesting that environmental changes that alter the taxonomic composition also affect the FA composition of zooplankton communities. Furthermore, the FA responses and their underlying environmental drivers differed between cladocerans and copepods. Cladocerans, including widespread Bosmina spp. and Daphnia spp., showed pronounced responses across the climate‐productivity gradient, with abrupt declines in PUFA, particularly eicosapentaenoic acid and arachidonic acid in warmer, browner, and more eutrophic lakes. Conversely, calanoid copepods had high and relatively stable PUFA levels across the gradient. In addition, all zooplankton taxa increased in stearidonic acid levels in larger lakes where PUFA‐rich cryptophytes were more abundant. Overall, our results suggest that climate‐driven environmental alterations pose heterogeneous impacts on PUFA levels among zooplankton taxa, and that the negative impacts of climate warming are stronger for cladocerans, especially so in small lakes.

Funder

Svenska Forskningsrådet Formas

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3