Responses by benthic invertebrate community composition to dissolved organic matter in lakes decline substantially above a threshold concentration

Author:

Jane Stephen F.1ORCID,Johnson Richard K.2ORCID,Rose Kevin C.1ORCID,Eklöv Peter3ORCID,Weyhenmeyer Gesa A.3ORCID

Affiliation:

1. Department of Biological Sciences Rensselaer Polytechnic Institute Troy New York USA

2. Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden

3. Department of Ecology and Genetics/Limnology Uppsala University Uppsala Sweden

Abstract

Abstract Dissolved organic matter (DOM), often measured as dissolved organic carbon (DOC), plays a fundamental role in influencing the structure and function of lake ecosystems. Due to the myriad ecosystem effects of DOM, widespread observations of long‐term increasing DOM concentrations have received much attention from ecologists. DOM positively influences primary production and consumer production at low concentrations due to the fertilising influence of bound nutrients. However, beyond a unimodal peak in production, a reduced light environment may result in a negative effect on production. This unimodal model has been largely developed and tested in lakes with low to moderate DOM concentrations (i.e., typically ≤10 mg/L DOC). To understand ecological responses in lakes across a larger range in DOM concentrations, we examined the response of benthic invertebrate communities in 148 Swedish lakes with DOM concentrations ranging between 0.67 and 32.77 mg/L DOC. We found that increasing DOM concentrations had a strong effect on invertebrate community composition below c. 10 mg/L. Across this range, abundances of individual taxa both increased and decreased, probably in response to environmental change induced by DOM. However, in lakes above this concentration, increasing DOM had minimal influence on community composition. As DOM concentrations continue to increase, faunal communities in lakes below this 10 mg/L DOC threshold are likely to undergo substantial change whereas those above this threshold are likely to be minimally impacted.

Funder

Svenska Forskningsrådet Formas

Vetenskapsrådet

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3