Study on forbidden pitch in plasmonic lithography: taking 365 nm wavelength thin silver film-based superlens imaging lithography as an example

Author:

Ding Huwen12ORCID,Liu Lihong1,Dong Lisong12,Han Dandan2ORCID,Fan Taian1,Zhang Libin12ORCID,Wei Yayi123

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Guangdong Greater Bay Area Applied Research Institute of Integrated Circuit and Systems

Abstract

Plasmonic lithography can make the evanescent wave at the mask be resonantly amplified by exciting surface plasmon polariton (SPP) and participate in imaging, which can break through the diffraction limit in conventional lithography. It provides a reliable technical way for the study of low-cost, large-area and efficient nanolithography technology. However, there is also a phenomenon in plasmonic lithography similar to the forbidden pitch in conventional projection lithography. In this paper, combined with the imaging model and the optical transfer function (OTF), the theoretical analysis points out the reasons for the existence of the phenomenon of forbidden pitch in plasmonic lithography. Taking the 365 nm wavelength Ag thin film-based superlens imaging lithography as an example, the positions of the forbidden pitches of the 1:1 mask, the bright-field mask and the dark-field mask are calculated separately, and the key factors affecting their positions are pointed out. Simulation is carried out through commercial software, and the correctness of theoretical analysis is verified. Finally, we summarize and give some possible suggestions for solving this problem, including exploring better illumination methods, avoiding the patterns with forbidden pitch in the design, or by adding assistant feature to the design.

Funder

Scientific Research Foundation of the University of Chinese Academy of Sciences

Guangdong Province Research and Development Program in Key Fields

A high-level innovation research institute from Guangdong Greater Bay Area Institute of Integrated Circuit and System

The construction of new research and development institutions

Guangzhou City Research and Development Program in Key Fields

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3