Affiliation:
1. Institute of Microelectronics
2. University of Chinese Academy of Sciences
3. Guangdong Greater Bay Area Applied Research Institute of Integrated Circuit and Systems
Abstract
This paper reminds the principle and characteristics of plasmonic lithography, and points out the importance of establishing a fast and high precision plasmonic lithography imaging model and developing computational lithography. According to the characteristics of plasmonic lithography, the rigorous coupled-wave analysis (RCWA) algorithm is a very suitable alternative algorithm. In this paper, a three-dimensional plasmonic lithography model based on RCWA algorithm is established for computational lithography requirements. This model improves the existing RCWA algorithm, that is, deduces the formula for calculating the light field inside the structure and proposes the integration, storage and invocation of the scattering matrix to improve the computation speed. Finally, the results are compared with commercial software for the two typical patterns. The results show that the two calculation results are very close, with the root mean square error (RMSE) less than 0.04 (V/m)2. In addition, the calculation speed can be increased by more than 2 times in the first calculation, and by about 8 times by integrating, storing and invoking the scattering matrix, which creates conditions for the development of plasmonic computational lithography.
Funder
Special Project for Research and Development in Key areas of Guangdong Province
Guangzhou City Research and Development Program in Key Fields
The construction of new research and development institutions
A high-level innovation research institute from Guangdong Greater Bay Area Institute of Integrated Circuit and System
Guangdong Province Research and Development Program in Key Fields
Fundamental Research Funds for the Central Universities
University of Chinese Academy of Sciences Education Foundation[China]
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献