Abstract
Defect detection requires highly sensitive and robust inspection methods. This study shows that non-overlapping illumination patterns can improve the noise robustness of deep learning ghost imaging (DLGI) without modifying the convolutional neural network (CNN). Ghost imaging (GI) can be accelerated by combining GI and deep learning. However, the robustness of DLGI decreases in exchange for higher speed. Using non-overlapping patterns can decrease the noise effects in the input data to the CNN. This study evaluates the DLGI robustness by using non-overlapping patterns generated based on binary notation. The results show that non-overlapping patterns improve the position accuracy by up to 51%, enabling the detection of defect positions with higher accuracy in noisy environments.
Funder
Japan Society for the Promotion of Science
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献