Heterogeneously integrated InGaN-based green microdisk light-emitters on Si (100)

Author:

Zhang Xingfei12,Li Zhicong12,Zhang Yiyun12ORCID,Wang Xuedong3,Yi Xiaoyan12,Wang Guohong12,Li Jinmin12

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Soochow University

Abstract

Heterogeneous integration of nitrides on Si (100) is expected to open the door to the new possibilities for this material system in the fields of high-speed integrated photonics and information processing. In this work, GaN epitaxial layer grown on the patterned sapphire substrate is transferred onto Si (100) by a combination of wafer bonding, laser lift-off and chemical mechanical polishing (CMP) processes. The GaN epilayer transferred is uniformly thinned down to 800 nm with a root mean square surface roughness as low as 2.33 Å. The residual stress within the InGaN quantum wells transferred is mitigated by 79.4% after the CMP process. Accordingly, its emission wavelength exhibits a blue shift of 8.8 nm, revealing an alleviated quantum-confined Stark effect. Based on this platform, an array of microcavities with diverse geometrics and sizes are fabricated, by which optically-pumped green lasing at ∼505.8 nm is achieved with a linewidth of ∼0.48 nm from ∼12 µm microdisks. A spontaneous emission coupling factor of around 10−4 is roughly estimated based on the light output characteristics with increasing the pumping densities. Lasing behaviors beyond the threshold suggest that the microdisk suffers less thermal effects as compared to its undercut counterparts. The electrically-injected microdisks are also fabricated, with a turn-on voltage of ∼2.0 V and a leakage current as low as ∼2.4 pA at -5 V. Being compatible with traditional semiconductor processing techniques, this work provides a feasible solution to fabricate large-area heterogeneously integrated optoelectronic devices based on nitrides.

Funder

National Key Research and Development Program of China

Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3