Affiliation:
1. Institute of Semiconductors
2. University of Chinese Academy of Sciences
3. Shenzhen University
Abstract
In this work, combining a series of wafer bonding, laser lift-off and chemical mechanical polishing processes, submicron-thick wafer-scale GaN-based thin-film epilayers are successfully transferred on Si (100), which provides a heterogeneous platform for fabricating microcavities for nitride-based integrated photonics. Low-threshold lasing via optical pumping from these transferred dry-etched green micro-ring cavities on Si is demonstrated by covering the whole micro-rings with dielectric distributed Bragg reflectors (DBRs), which greatly reduces the lasing threshold upon a better optical confinement at the ring rim. A high quality-factor of ∼3800 can be observed from the micro-rings beyond the lasing threshold under pulsed excitation conditions. Furthermore, room-temperature continuous-wave (CW) lasing at a wavelength of 521.7 nm with an ultralow threshold of 0.35 kW/cm2 is achieved. Our results suggest the use of a burying DBR layer notably improves the WGM microcavity confinement, providing insights for the design of low-threshold micro-lasers and low-loss waveguides for potential integrated photonic applications in the visible light range on the Si platform.
Funder
National Key Research and Development Program of China
Chinese Academy of Sciences
Shenzhen University Basic Research and Cultivation Fund