Task Characterisation and Cross-Platform Programming Through System Identification

Author:

Kyriacou Theocharis1,Nehmzow Ulrich1,Iglesias Roberto2,Billings Steve3

Affiliation:

1. Department of Computer Science, University of Essex, United Kingdom

2. Department of Electronics and Computer Science, University of Santiago de Compostela, Spain

3. Department of Automatic Control and Systems Engineering, University of Sheffield, United Kingdom

Abstract

Developing robust and reliable control code for autonomous mobile robots is difficult, because the interaction between a physical robot and the environment is highly complex, it is subject to noise and variation, and therefore partly unpredictable. This means that to date it is not possible to predict robot behaviour, based on theoretical models. Instead, current methods to develop robot control code still require a substantial trial-and-error component to the software design process. Such iterative refinement could be reduced, we argue, if a more profound theoretical understanding of robot-environment interaction existed. In this paper, we therefore present a modelling method that generates a faithful model of a robot's interaction with its environment, based on data logged while observing a physical robot's behaviour. Because this modelling method — nonlinear modelling using polynomials — is commonly used in the engineering discipline of system identification, we refer to it here as “robot identification”. We show in this paper that using robot identification to obtain a computer model of robot-environment interaction offers several distinct advantages: Very compact representations (one-line programs) of the robot control program are generated The model can be analysed, for example through sensitivity analysis, leading to a better understanding of the essential parameters underlying the robot's behaviour, and The generated, compact robot code can be used for cross-platform robot programming, allowing fast transfer of robot code from one type of robot to another. We demonstrate these points through experiments with a Magellan Pro and a Nomad 200 mobile robot.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards modelling complex robot training tasks through system identification;Robotics and Autonomous Systems;2010-03

2. An application of Lyapunov stability analysis to improve the performance of NARMAX models;Robotics and Autonomous Systems;2010-03

3. Model identification and model analysis in robot training;Robotics and Autonomous Systems;2008-12

4. Accurate robot simulation through system identification;Robotics and Autonomous Systems;2008-12

5. Robot learning through task identification;Robotics and Autonomous Systems;2006-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3