Controlled Metal Detector Mounted on Mine Detection Robot

Author:

Masunaga Seiji1,Nonami Kenzo1

Affiliation:

1. Graduate School of Science and Technology, Chiba University. Department of Electronics and Mechanical Engineering, Chiba University. 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 Japan

Abstract

Landmine detection capability of metal detectors is very sensitive to the gap between buried landmines and the sensor heads. Therefore, human deminers manually scan ground surface with the metal detectors in such a manner that the sensor heads follow the ground surface. In case of robots assisted landmine detection, this function can be performed accurately and safely by controlling the gap and attitude of the sensor heads. In this investigation, the effectiveness of the gap and attitude control of the sensor head by some mechanical manipulator on the landmine detection performance has been addressed quantitatively. To this end, the paper describes the development of a Controlled Metal Detector (CMD) for controlling the gap and attitude of the sensor head. The CMD generates trajectories of the sensor head from the depth information of the ground surface acquired with 3-D stereovision camera in order to avoid any obstacles and possible impact with the ground, and then tracks the trajectories with a trajectory-tracking controller. The effectiveness and the impact related to the gap and attitude control on the landmine detection performance of the CMD have been demonstrated by experimental studies.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of the Symmetry Neural Network Morphology on the Mine Detection Metric;Symmetry;2024-04-17

2. Deep Learning-Based Real-Time Detection of Surface Landmines Using Optical Imaging;Remote Sensing;2024-02-14

3. A comprehensive review on landmine detection using deep learning techniques in 5G environment: open issues and challenges;Neural Computing and Applications;2022-09-20

4. Mine Detection using a Swarm of Robots;2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2022-01-28

5. Design of robot assisted wireless sensor;IOP Conference Series: Materials Science and Engineering;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3