Deep Learning-Based Real-Time Detection of Surface Landmines Using Optical Imaging

Author:

Vivoli Emanuele1ORCID,Bertini Marco1ORCID,Capineri Lorenzo2ORCID

Affiliation:

1. Media Integration and Communication Center (MICC), Department Information Engineering, University of Florence, Viale Giovanni Battista Morgagni, 65, 50134 Florence, Italy

2. Ultrasound and Non-Destructive Testing Laboratory (USCND), Department Information Engineering, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy

Abstract

This paper presents a pioneering study in the application of real-time surface landmine detection using a combination of robotics and deep learning. We introduce a novel system integrated within a demining robot, capable of detecting landmines in real time with high recall. Utilizing YOLOv8 models, we leverage both optical imaging and artificial intelligence to identify two common types of surface landmines: PFM-1 (butterfly) and PMA-2 (starfish with tripwire). Our system runs at 2 FPS on a mobile device missing at most 1.6% of targets. It demonstrates significant advancements in operational speed and autonomy, surpassing conventional methods while being compatible with other approaches like UAV. In addition to the proposed system, we release two datasets with remarkable differences in landmine and background colors, built to train and test the model performances.

Publisher

MDPI AG

Reference55 articles.

1. Monitor, T. (2024, February 09). Landmine and Cluster Munition Monitor. Available online: http://www.the-monitor.org/en-gb/home.aspx.

2. Coalition, C.M. (2024, February 09). Cluster Munition Monitor 2023. Available online: http://www.the-monitor.org/media/3383234/Cluster-Munition-Monitor-2023_Web.pdf.

3. Soil Properties and Performance of Landmine Detection by Metal Detector and Ground-Penetrating Radar—Soil Characterisation and Its Verification by a Field Test;Takahashi;J. Appl. Geophys.,2011

4. Controlled Metal Detector Mounted on Mine Detection Robot;Masunaga;Int. J. Adv. Robot. Syst.,2007

5. Pulse-Induction Metal Detector with Time-Domain Bucking Circuit for Landmine Detection;Kim;Electron. Lett.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3