Broad sense heritability and genotype × environment interaction for carbon isotope discrimination in field-grown wheat

Author:

Condon AG,Richards RA

Abstract

Carbon isotope discrimination (-) has been proposed as a possible selection criterion for greater water use efficiency in breeding programs for water-limited environments because it provides an integrative assessment of genotypic variation in leaf transpiration efficiency. Considerable genotypic variation for - has been demonstrated in wheat, but environmental factors may cause even larger changes in the value of - measured in plant dry matter, which could compromise the effective use of - in breeding programs. In this study we assess broad-sense heritability of - and the significance of genotype x environment interaction for - in field-grown wheat. Another objective was to identify the most effective growth stage or plant part to characterize genotypic variation in -. Experiments were done using several large sets of genotypes (between 8 and 40, usually c. 20) grown in a range of field environments spanning the southern Australian wheat-belt. Carbon isotope discrimination was determined on unreplicated grain samples from seven Interstate Wheat Variety trials grown in 1983 and 1984 and on several plant parts taken from replicated experiments conducted at four locations in south-west New South Wales from 1985 to 1988. From these replicated experiments broad-sense heritabilities for - were calculated on a genotype mean basis h2-M) and on a single-plot basis (h2-P). In dry matter sampled from several environments, site-mean - ranged from 21.0 x 10-3 to 18.9 x 10-3 for early-formed dry matter and from 16.4 x 10-3 to 13.4 x 10-3 for grain. When followed in a single environment, the value of - fell from c. 20 x 10-3 in early-formed leaves to 15.4 x 10-3 in the grain. Variation among genotypes in - of different plant parts was always significant, and was typically c. 2 x 10-3 . Among Australian wheats, low values of - (implying greater transpiration efficiency) were strongly associated with the WW15 genetic background. Estimates of broad-sense heritability for - averaged over 95%, on a genotype mean basis, in experiments where common genotypes were grown in numerous environments. In individual trials, heritability was lowest for plant material sampled near anthesis (average value for h2-M, 83% and for h2-p, 62%) and greatest for dry matter laid down before or during early stem elongation (average value for h2-M, 95% and for h2-P 88%). Even though heritability for grain - was also relatively high (average value for h2-M, 92% and for h2-P, 79%), genotypic differences in grain - are difficult to interpret because of the likelihood of some changes in genotype ranking for - resulting from differences among genotypes in the degree of water stress encountered during grain filling. As well, the contribution of remobilized carbon to grain - may vary between environments and genotypes. We conclude that, for wheat, assessment of genotypic variation in - should be most effective under well-watered conditions using dry matter laid down early in plant development.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3