Carbon isotope discrimination as a key physiological trait to phenotype drought/heat resistance of future climate-resilient German winter wheat compared with relative leaf water content and canopy temperature

Author:

Kunz Karolin,Hu Yuncai,Schmidhalter Urs

Abstract

Climate change is expected to influence crop growth through frequent drought and heat extremes, and thus, drought and heat tolerance are of increasing importance as major breeding goals for cereal crops in Central Europe. Plant physiological water status traits are suitable for phenotyping plant drought/heat tolerance. The objective of this study was to determine whether relative leaf water content (RLWC), plant canopy temperature (CT), and carbon isotope discrimination (CID) are suitable for phenotyping the drought/heat resistance of German winter wheat for future climate resilience. Therefore, a comprehensive field evaluation was conducted under drier and warmer conditions in Moldova using a space-for-time approach for twenty winter wheat varieties from Germany and compared to twenty regionally adapted varieties from Eastern Europe. Among the physiological traits RLWC, CT, and CID, the heritability of RLWC showed the lowest values regardless of year or variety origin, and there was no significant correlation between RLWC and grain yield regardless of the year, suggesting that RLWC did not seem to be a useful trait for distinguishing origins or varieties under continental field conditions. Although the heritability of CT demonstrated high values, the results showed surprisingly low and nonsignificant correlations between CT and grain yield; this may have been due to a confounding effect of increased soil temperature in the investigated dark Chernozem soil. In contrast, the heritability of CID in leaves and grain was high, and there were significant correlations between grain yield and CID, suggesting that CID is a reliable indirect physiological trait for phenotyping drought/heat resistance for future climate resilience in German wheat.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3