Ecophysiological Responses of Tall Wheatgrass Germplasm to Drought and Salinity

Author:

Borrajo Celina I.ORCID,Sánchez-Moreiras Adela M.ORCID,Reigosa Manuel J.ORCID

Abstract

Tall wheatgrass (Thinopyrum ponticum (Podp.) Barkworth and D.R. Dewey) is an important, highly salt-tolerant C3 forage grass. The objective of this work was to learn about the ecophysiological responses of accessions from different environmental origins under drought and salinity conditions, to provide information for selecting superior germplasm under combined stress in tall wheatgrass. Four accessions (P3, P4, P5, P9) were irrigated using combinations of three salinity levels (0, 0.1, 0.3 M NaCl) and three drought levels (100%, 50%, 30% water capacity) over 90 days in a greenhouse. The control treatment showed the highest total biomass, but water-use efficiency (WUE), δ13C, proline, N concentration, leaf length, and tiller density were higher under moderate drought or/and salinity stress than under control conditions. In tall wheatgrass, K+ functions as an osmoregulator under drought, attenuated by salinity, and Na+ and Cl− function as osmoregulators under salinity and drought, while proline is an osmoprotector under both stresses. P3 and P9, from environments with mild/moderate stress, prioritized reproductive development, with high evapotranspiration and the lowest WUE and δ13C values. P4 and P5, from more stressful environments, prioritized vegetative development through tillering, showing the lowest evapotranspiration, the highest δ13C values, and different mechanisms for limiting transpiration. The δ13C value, leaf biomass, tiller density, and leaf length had high broad-sense heritability (H2), while the Na+/K+ ratio had medium H2. In conclusion, the combined use of the δ13C value, Na+/K+ ratio, and canopy structural variables can help identify accessions that are well-adapted to drought and salinity, also considering the desirable plant characteristics. Tall wheatgrass stress tolerance could be used to expand forage production under a changing climate.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3