Back to the future for drought tolerance

Author:

Guadarrama‐Escobar Luis M.1ORCID,Hunt James1ORCID,Gurung Allison1ORCID,Zarco‐Tejada Pablo J.123ORCID,Shabala Sergey45ORCID,Camino Carlos6ORCID,Hernandez Pilar3ORCID,Pourkheirandish Mohammad1ORCID

Affiliation:

1. School of Agriculture, Food and Ecosystem Sciences (SAFES) University of Melbourne Melbourne Vic. 3010 Australia

2. Department of Infrastructure Engineering (IE) Faculty of Engineering and Information Technology (FEIT) University of Melbourne Melbourne Vic. 3010 Australia

3. Institute for Sustainable Agriculture (IAS) Spanish Council for Scientific Research (CSIC) Cordoba 14004 Spain

4. School of Biological Sciences University of Western Australia Perth WA 6009 Australia

5. International Research Centre for Environmental Membrane Biology Foshan University Foshan 528000 China

6. Joint Research Centre (JRC) European Commission (EC) Ispra 21027 Italy

Abstract

SummaryGlobal agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.

Funder

Australian Research Council

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3