Drought tolerances of three stem-succulent halophyte species of an inland semiarid salt lake system

Author:

Marchesini Victoria A.,Yin Chuanhua,Colmer Timothy D.,Veneklaas Erik J.

Abstract

Succulent halophytes of the genus Tecticornia are dominant in salt marshes of inland lakes of Australia. We assessed the drought responses of a C4 species, Tecticornia indica subsp. bidens (Nees) K.A.Sheph. & Paul G.Wilson, and two C3 species, Tecticornia auriculata Paul G.Wilson (K.A.Sheph. & Paul G.Wilson) and Tecticornia medusa (K.A.Sheph. & S.J.van Leeuwen) that occur in the Fortescue Marsh, north-west Australia. In a glasshouse experiment, the three species were grown individually and in different combinations, with varying number of plants per pot to achieve comparable dry-down rates among pots. Prior to the imposition of drought (by withholding water) the three species showed differences in dry mass and physiological variables. As the soil dried out, the three species showed similar reductions of transpiration, osmotic potential and photochemical efficiency. Shoot growth was depressed more than root growth. Tissue water loss from portions of the succulent shoots accounted for ~30% of transpiration during severe drought stress. There was no osmotic adjustment. Shoot tissue concentrations of Na+ and Cl– tended to increase during drought, and those of K+ decreased; however, these changes were not always statistically significant. Chlorophyll concentration decreased but betacyanin concentration increased. Despite occupying distinct positions in a water and salinity gradient, the three Tecticornia species had remarkably similar responses to soil water deficit.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3