Physiological response of halophytes to multiple stresses

Author:

Hamed Karim Ben,Ellouzi Hasna,Talbi Ons Zribi,Hessini Kamel,Slama Ines,Ghnaya Taher,Bosch Sergi Munné,Savouré Arnould,Abdelly Chedly

Abstract

As halophytes grow vigorously in saline soils, they serve as extraordinary resources for the identification and development of new crop systems. Understanding the mechanisms of tolerance of halophytes to salinity in combination with other co-occurring constraints such as drought, flooding, heavy metals and nutrient deficiencies, would facilitate efforts to use halophytes for saline land revegetation, as well as provide new insights that might be considered in future breeding of plants for salt-affected agricultural lands. Recent results suggest that salinity may improve the response of halophytes to other stresses. Some physiological and biochemical mechanisms of tolerance to salinity are common to many halophytes when plants are subjected to salinity, whereas others are specifically amplified under a combination of stresses. Therefore, the response of halophytes to multiple stresses may not reflect an additive effect of these constraints, but rather, constitute specific response to a new situation where many constraints are operating simultaneously. Comparative studies between halophytes and glycophytes have shown that halophytes are better equipped with the mechanisms of cross-stress tolerance and are constitutively prepared for stress. Moreover, other data has shown that the pre-treatment of halophytes with salinity or other constraints in the early stages of development improves their subsequent response to salinity, which suggests the capacity of these plants to ‘memorise’ a previous stress allows them respond positively to subsequent stress.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3