An integrated framework for predicting the risk of experiencing temperature conditions that may trigger late-maturity alpha-amylase in wheat across Australia

Author:

Armstrong Robert N.ORCID,Potgieter Andries B.,Mares Daryl J.,Mrva Kolumbina,Brider Jason,Hammer Graeme L.

Abstract

Late-maturity alpha-amylase (LMA) is a key concern for Australia’s wheat industry because affected grain may not meet receival standards or market specifications, resulting in significant economic losses for producers and industry. The risk of LMA incidence across Australia’s wheatbelt is not well understood; therefore, a predictive model was developed to help to characterise likely LMA incidence. Preliminary development work is presented here based on diagnostic simulations for estimating the likelihood of experiencing environmental conditions similar to a potential triggering criterion currently used to phenotype wheat lines in a semi-controlled environment. Simulation inputs included crop phenology and long-term weather data (1901–2016) for >1750 stations across Australia’s wheatbelt. Frequency estimates for the likelihood of target conditions on a yearly basis were derived from scenarios using either: (i) weather-driven sowing dates each year and three reference maturity types, mimicking traditional cropping practices; or (ii) monthly fixed sowing dates for each year. Putative-risk ‘footprint’ maps were then generated at regional shire scale to highlight regions with a low (<33%), moderate (33–66%) or high (>66%) likelihood of experiencing temperatures similar to a cool-shock regime occurring in the field. Results suggested low risks for wheat regions across Queensland and relatively low risks for most regions across New South Wales, except for earlier planting with quick-maturing varieties. However, for fixed sowing dates of 1 May and 1 June and varying maturity types, the combined footprints for moderate-risk and high-risk categories ranged from 34% to 99% of the broad wheat region for South Australia, from 12% to 97% for Victoria, and from 9% to 59% for Western Australia. A further research component aims to conduct a field validation to improve quantification of the range of LMA triggering conditions; this would improve the predictive LMA framework and could assist industry with future decision-making based on a quantifiable LMA field risk.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3